ABSTRACT. The determination of
permeability is an example of many
geological problems where labora-
tory-measured data is expensive and
limited in quantity. We related per-
meability values to well logs. We used
neural networks trained both with the
popular backpropagation algorithm
and with a genetic algorithm. The ge-
netic training produced smaller er-
rors and better generalization than
backpropagation training on the same
network topology. The cost includes
greater average computation time as
well as greater variation in computa-
tion time for the genetic training.
The genetic training is robust and not
sensitive to selection of the crossover
and mutation parameters.
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M any geological problems require data fitting and parameter
estimation in multidimensional space. One example is the esti-
mation of flow capability of sedimentary rocks, or permeability.
In petroleum reservoirs, the magnitude of the permeability value
directly affects hydrocarbon production and the definition of
reserves. The determination of such a property is a complex
problem because laboratory-measured permeability values on
rock samples (“cores”) are only available in limited and iso-
lated well locations and/or intervals. Much effort is therefore
required to relate permeability values to other measures, such as
well logs (a series of multi-type digital measurements along the
vertical depth of drilled wells), so that transformations can be
developed to predict permeability in uncored wells and/or inter-
vals where well logs are available.

Many methods have been proposed for permeability estima-
tion in drilled wells, ranging from theoretical relations, such as
the Carmen-Kozeny equation (Amaefule et al. 1993), to statisti-
cal methods, such as multiple linear regression (Jian et al. 1994),
to empirical methods, such as backpropagation neural networks
(Wong et al. 1995). One commonality among these methods is
the existence of a (multidimensional) input vector and a (multi-
dimensional) parameter vector, which is used in some fashion
to produce a result. Mathematically, we can generalize these
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methods in the following form:
k=f(X,8) (D

where k denotes permeability (the dependent vari-
able), fis the estimator, X = {x,x,,.., X, } is an n-
dimensional input vector (the independent vari-
ables), and 6=19;,65....,8,, }is an m-dimensional
parameter vector. Examples of the input and pa-
rameter vectors for the methods listed previously
are shown in Table 1. All the methods aim to deter-
mine each of the elements in the parameter vector
6=16,,65,....8,, -

A genetic algorithm (GA) is another example
method that can be used to map well logs to perme-
ability. It is an efficient global optimization method
for solving ill-behaved, non-linear, and discontinu-
ous problems in which exact physical relations do
not exist. Other optimization methods, such as the
backpropagation (gradient descent) algorithm used
in supervised neural networks, are local in nature,
adopting an iterative procedure using partial de-
rivatives to improve on some initial model. These
methods can lead to a dependence on the starting
model and are prone to entrapment in local minima.
Moreover, the calculation of derivatives can be dif-
ficult and further add to instability if numerical
approximations are used.

GAs produce optimized solutions by mimick-
ing the principle of survival of the fittest in the

Table 1. Comparison of various permeability (k) estimators.

Darwinian theories of natural evolution on a com-
puter (Davis 1991). This method uses a specific
search strategy to look for an optimized parameter
vector for a given estimator that maximizes a “fit-
ness” function. Thus, GAs have a wide range of
applications (Fang et al. 1992, Hallagher and Sam-
bridge 1994, McKinney and Lin 1994, Moghaghegh
et al. 1996, Wang and Elbuluk 1996) and can be
used in conjunction with the methods listed above.
For example, GAs can be employed to optimize the
connection weights (which produce the parameter
vector O ) within a given neural network architec-
ture without the use of the backpropagation algo-

rithm.
In this paper, we will first review the basics of

GAs, then demonstrate how GAs can be used to
optimize the parameters in a supervised neural net-
work. We will then compare the performance of GAs
and backpropagation neural networks in a case study
in which well logs are used to predict reservoir per-
meability. "

Genetic Algorithms

Background

Genetic algorithms (GAs) were first introduced
in the field of artificial intelligence by Holland
(1975). These methods mimic processes in the Dar-

Characteristics

Carmen-Kozeny Multiple linear regression Backpropagation
neural networks
Theoretical; treat rocks as Statistical; linear (can also Empirical; non-parametric; non-
bundles of simple capillary | include non-linear terms); linear
tubes parametric

I 3 n ns |
(p k=zlaixf k:f z bjf{Zale]
=

T 22

Input vector I dimension n dimensions n dimensions

Porosity ¢ . Well logs x; Well logs x;
Parameter vector m=3 dimensions (F,1S); m=n dimension; m dimensions (see Equation 5);

Grain shape factor F Weights a; Weights a;; b;

Tortuosity t

Surface area S
Method to obtain Trial and error Least-squares Least-squares
the parameters (rock-dependent) Learn by iterations
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winian theories of natural evolution in which win-
ners survive to reproduce and pass along their
“good” genes to the next generation, and ultimately,
a “perfect” species is evolved. Hence the term “ge-
netic” was adopted as the name of the mathemati-
cal algorithms.

The applications of GAs in geosciences were
hindered in the early days by the unavailability of
fast computers. The methodology became popular
during the beginning of 1990s. Most applications
have been limited to seismology. Gallagher and
Sambridge (1994) presented an excellent review on
this subject. Only a few papers in the literature ap-
ply the methodology in drilled wells. Fang et al.
(1992) demonstrated the use of GAs to predict po-
rosity-permeability from compositional and textural
information, and the Archie parameters in petro-
physics. The same authors later used the same
method to map geochemical data into a rock’s min-
eral composition (Fang et al. 1996). Mohaghegh et
al. (1996) applied GAs to a hydraulic fracture treat-
ment design in a gas storage field.

GAs can be used to solve both unconstrained
and constrained large-scale optimization problems.
They are stochastic search algorithms that perform
particularly well in cases where the global mini-
mum is hidden among many local minima. Unlike
other optimization methods, the implementation of
GAs is independent of the nature of both the for-
ward problem and the form of objective function in
that we avoid the need to calculate partial deriva-
tives or perform matrix inversion. -

Biological Representation

The basic idea of using GAs as an optimization
method is to represent a population of possible or
“parent” solutions in a chromosome-type encoding
and manipulate these encoded solutions through
simulated reproduction, crossover, and mutation.
Reproduction involves a stochastic selection of two
parents for mating and producing the next genera-
tion. Crossover allows genetic information exchange
on each parent solution. Mutation allows a random
introduction of new characteristics, which are un-
related to the parent solutions, to the offspring. This
process is repeated for many generations. During
the evolutionary process, the offspring with char-
acteristics similar to the optimum or “perfect” off-
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spring, as measured by some fitness function, would

tend to survive, whereas the offspring less similar
to the optimum offspring would die off, in a man-
ner analogous to the Darwinian theories of the sur-
vival of the fittest in nature.

Computer Impiementation

The following steps outline the general struc-
ture of genetic algorithms implemented in a com-
puter:

Population Initialization

Generate a population of s parent solutions. Each
parent solution contains a parameter vector
9; ={91,92,.--,9m}j that is initialized by random
numbers. Each of the elements 6; is commonly en-
coded with a certain length of binary numbers (or
bit-string), or @, = {bl‘ B ....b, } bie {01}, where
£ is the length of the binary string (or bits). The
binary numbers represent the “genetic” informa-
tion of the solution. For example, a bit-string of
(0,1,0,1), with £ equals 4 bits, represents a deci-
mal value of 5. When putting 2l the elements in
the parameter vector G ; one after another, each of
the parent solutions will have a total bit-string of
(mx ¢) bits, or |

= 1.1 41 2.2 2
Bj :Hbl,bz,..., bg},{bl sbz :-.-gb_e }:-.-, {blni)bgli-.-,b?ﬂj.

Performance Evaluation

A “fitness” function is often used to evaluate
the performance of each of the parent solutions. A
fitness function to assess model fit may be defined
as follows: '

- 10
F@))= Y EG)) )
and
_ " "
E®;)= Y (k—k;)* (3)
i

where F(8,)is the fitness value for the parent solu-
tion j, j=1,...,s where s is the number of parent so-
lutions in the population. E® 1) is the sum of squared
differences (i.e., errors) between the observed data
k; (n, of them) and the model predictions k;-;- de-
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fined in Equation (1). The higher the F(8;) value,
or the lower the E@8;), the better the solution.

Reproduction

Selecting a pair of parents for reproduction is a
very important aspect of GAs. There are many meth-
ods of selection. A parent solution can be selected
more than once. The most popular selection method
is to choose the parent solutions with high fitness
function values relative to the average fitness value,
F (Wang and Elbuluk 1996):

- 13 .
F_;§F(8j) )

If any of the F(8 ;) values is less than the average
fitness value F , it will be removed from the POpU-
lation. This is analogous to the extinction process
of non-competitive species in the Darwinian theo-
ries of evolution. If the number of removed solu-
tions is r, then the number of remaining solutions
will be (s-7). In order to keep the number of solu-
tions in the original population constant, there is a
need to reproduce r solutions. It is usually done by
duplicating the remaining parents (Wang and
Elbuluk-1996). In this paper, we duplicate the re-
maining solutions based on their F(8;) values using
a simple Monte Carlo sampling. The basic idea is
to duplicate the “good” parent solution with a high
probability. This is analogous to the survival of the
fittest, but it still has a chance of being a non-domi-
nant species.

Crossover

Crossover produces offspring by exchanging the
genetic information between the selected parent
solutions. The selection criteria are based on a user-
defined probability for crossover, P, (generally be-
tween 0.5 to 0.8). This probability defines the num-
ber of candidates for crossover. For example, if P,
1s 50%, it means 50% of the s parents in the popu-
lation will be selected randomly and mated in pairs.

Two-point crossover is a common method to
implement the crossover mechanism (Lucasius and
Kateman 1993, 1994). It works by randomly se-
lecting two points along the (m x £ ) long bit-string.
The binary numbers between the two selected points
of the paired solutions are switched and this results
in two new solutions.

70

Mutation

The reproduction and crossover would only ex-
ploit the known regions in the solution space, which
could lead to premature convergence for the fitness
function with the consequence of missing the glo-
bal optimum by exploiting some local optimum.
Mutation is a genetic process to avoid such a prob-
lem. This process allows the introduction of new
characteristics—unrelated to the parent solutions—
to the offspring. It first requires a user-defined prob-
ability for mutation P,, (generally between 0.001 to
0.01). A uniform random number (between 0 to 1)
is then simulated on each of the (m x ¢ ) bits of each
solution. If the simulated number for a bit location
is less than P,,, mutation will take place in that lo-
cation and its binary value will be flipped in parity
(1.e., 0 becomes 1, and vice versa). Otherwise, the
bit is unchanged. _

Note that if P, is 1, then all the bits will un-
dergo mutation and the algorithm will perform simi-
larly to the standard Monte Carlo. Moreover, if P,
is 1/(m x ¢ ), then, on average, one bit per bit-string
will undergo mutation.

Termination Criteria

This paper uses GAs to optimize the parameters

‘in neural networks. The termination or stopping

criterla for the iterative process is similar those com-
monly used in neural learning. In this work, we
evaluate model performance based on the minimum
error on validation patterns after finishing a preset
maximum number of iterations. More details are
given in the field example.

Field Example

Objective

The objective of this example is to compare the
generalization capability of backpropagation and
genetic algorithms in predicting permeability from
data for oil wells located offshore in western Aus-
tralia. We use both algorithms to train a neural net-
work. Hereafter, we will use “BPNN” to denote the
neural network trained by the backpropagation al-
gorithm, and “GANN” to denote the neural net-
work trained by the genetic algorithms.
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Data Descriptions

Two oil wells, namely #1 and #2, in a lithologi-
cally complex reservoir were used to provide well
logs and core permeability values. Well logs are
digital measurements obtained every 150 mm or so
of reservoir depth by lowering various equipment
in the drilled wells. The well logs used for the analy-
ses were gamma ray (GR), deep resistivity (LLD),
sonic travel time (DT), bulk density (RHOB), and
neutron porosity (NPHI). The groupings of the rock
were also incorporated in the input data set as a
discrete variable. There is a total of six indepen-
dent variables (7;=6). The values of the dependent
variable, the core permeability measurements (k),
were available at selected well depths.

In this study, Well #1 and Well #2 contain 152
and 156 points, respectively. All the input data were
normalized in the range of (0,1). This is normally
done in neural computation as the network will then
give comparable magnitudes of weight values. All
the permeability values were normalized in the
range of (0.1,0.9). In order to keep consistency, the
same normalized input and output values were used
- for both BPNN and GANN.,

Neural Network

In this study, we used a simple three-layer feed-
forward neural network. There were six input units
and one output unit. The optimum number of hid-
den units was determined by cross-validation. All
connections are from units in one layer to units in
the next layer, with no lateral, backward, or recur-
sive connections. Each unit is connected to each
unit in the preceding layer by a simple weighted
link with the basic sigmoid logistic activation func-
tion. Bias units are also included. The network was
trained using a training set of input patterns with
desired outputs. The network was tested using a
validation set of patterns that were never seen by
the network during training and thus provided a
good measure of the generalization capabilities of
the network.

The number of connection weights (or the di-
mensions of the parameter vector) depend on the
number of hidden units used. Their relation is:

m=(mi+Dxng+(na+ 1) xn3 (5)

where m is the dimension of the parameter vector,
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Ry, g, and n3 are the number of input, hidden and
output units, respectively. In this study, n; is 6 and
n3 is 1. Hence, m = 41n, + 1. The number of un-
knowns (weights) increases with the number of hid-
den neurons.

In this study, we first used BP to determine the
optimum number of hidden neurons.. We then ap-
plied GAs to the same neural network architecture
and determined whether GAs performed better than.
BP.

Simulation Setup

In order to evaluate the generalization perfor-
mance of the methods, the data from Well #1 were
first used for training and data from Well #2 for
validation. This was referred to as “Case 1.” In or-
der to reduce the simulation bias associated with
the predictions, we then swapped the data for train-
ing and validation. This was referred to as “Case
2.” The maximum number of iterations was set at
5,000.

The model parameters employed in the BPNN
and GANN methods are shown in Table 2. Note
that the BP is a gradient descent method which at-
tempts to reduce the model error (here we used root
mean-square-error, or RMSE) by iteration. It is gen-
erally characterised by two parameters: a learning
rate and a momentum term. Their values are shown
in Table 2. In GAs, we aimed to maximize the fit-
ness function as defined in Equation (2).

Table 2. The configurations of the algorithms.

Backpropagation algorithm

Learning rate 0.95
Momentum 0.50
Genetic algorithms

Population size, s 50
Bit-string for each unknown, £ 32
Probability for crossover, P, 0.6
Probability for mutation, P,,, 0.003
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Results

To determine the optimum number of hidden
neurons, we ran a sensitivity analysis using two to
nine hidden neurons. This was done on both cases:
Case 1 using Well#1 for training and Well #2 for
validation; Case 2 using Well #2 for training and
Well #1 for validation. In both cases, the perfor-
mance was evaluated at the minimum RMSE on
the validation data after finishing the 5,000 itera-
tions. This is a common method to avoid over-fit-
ting. For each hidden size, 10 runs were performed
using different sets of initial weights. The results
are displayed in Figure 1. The diagrams show the
minimum, average or mean, and maximum RMSE
values (see the legend bar in the plot) for each hid-
den size. The best numbers of hidden neurons, on
average, were five in Case 1 and two in Case 2. The
“absolute” best results (with minimum errors) were
with a hidden size of three in both cases. These
errors were about 0.087 and 0.081, respectively.
These two values served as a basis for comparing
the GANN performance.

In GANN, we ran analyses on the optimum (3)
hidden neurons. Ten runs were performed on each
case using different initial populations. The results
are shown in Figure 2, together with the best BPNN
results. Figure 2a shows that the minimum and av-
erage errors from GANN were both less than the
minimum errors from BPNN for both cases. In Case
2, even the maximum error from GANN was less
than the minimum error from BPNN. Comparing
their average errors, GANN is about 4.4% and 7.5%

Table 3. Comparison of BPNN and GANN using three hidden

neurons.
RMSE
Method Min Mean Max
Casel BPNN 0.0871 0.0894 0.0935
GANN 0.0823 0.0855 0.0889
Case 2 BPNN 0.0811 0.0857 0.0891
GANN 0.0771 0.0792 0.0805
No. of iterations at min RMSE
Case 1 BPNN 413 596 1108
GANN 143 273 4927
Case 2 BPNN 29 303 809
GANN 672 2576 4642
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better than BPNN in cases 1 and 2, respectively.
Figure 2b displays the statistics of the number of
iterations required to produce a generalized solu-
tion. It shows that GANN took much more compu-
tational time to generalize on average compared to
BPNN. Their respective values are tabulated in
Table 3. ‘

In this study, GAs produced a smaller error com-
pared to BPNN. We have also examined the sensi-
tivity of the choice of the crossover and mutation
probabilities in GAs. The results showed that GAs
for this problem were not sensitive to the selection
of these parameters. The important model param-
eters in GAs are the values of the (randomly gener-
ated) initial genes in the population that affects the
performance, as we have shown in this study. From
these results, we can conclude that GAs are more
robust than BPNN, as they avoid local optima.

It is important to note that the speed of conver-
gence in GAs is slow compared to BPNN iterations.
In this exercise, a single run of GANN was about
100 times (in terms of CPU time) slower than that
of BPNN. Moreover, GANN also took more itera-
tions to generalize (Figure 2b). It therefore illus-
trates a trade-off between accuracy and time for
practical applications. This is relevant, especially
if the simulation takes a lot of CPU time.

Conclusions

Genetic algorithms (GAs) are useful in the
searching global minimum in a large and complex
space. GAs can be used to predict permeability from
well logs, providing their function relation (or esti-
mator) is given, such as the use of neural networks.
This methodology optimizes the parameters used
in the estimator.

In this study, the a\)erage errors obtained from
GAs were smaller than those obtained from the
backpropagation algorithm. In one case, the worst
performance of GAs was still better than the best
result obtained from backpropagation.

GAs are slow in convergence compared to the
backpropagation learning. Optimizing its speed of
convergence is currently a challenging research
area.

Further work will concentrate on: 1) the inte-
gration of fuzzy logic with genetic algorithms in
order to handle uncertain and vague data; and 2)
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Figure 1. Results from backpropagation neural networks for various numbers of hidden neurons.
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Figure 2. Comparison of BPNN and GANN using three hidden neurons.
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the use of trained weights from backpropagation
networks to initialize GAs.
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